
*This paper was partially presented at the 1995 ASME/JSME Pressure Vessels and Piping Conference, Honolulu, in July
of 1995

CCC 0029—5981/97/061071—20 Received 5 March 1996
( 1997 by John Wiley & Sons, Ltd. Revised 28 June 1996

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, VOL. 40, 1071—1090 (1997)

INELASTIC CONSTITUTIVE PARAMETER
IDENTIFICATION USING AN EVOLUTIONARY

ALGORITHM WITH CONTINUOUS INDIVIDUALS*

TOMONARI FURUKAWA AND GENKI YAGAWA

Department of Quantum Engineering and Systems Science, ºniversity of¹okyo, 7-3-1 Hongo, Bunkyo-ku,¹okyo, 113, Japan

SUMMARY

This paper presents a method for identifying the parameter set of inelastic constitutive equations, which is
based on an evolutionary algorithm proposed by the authors. The advantage of the method is that
appropriate parameters can be identified even when the measured data are subject to considerable errors
and the model equations are inaccurate. The design of experiments suited for the parameter identification of
a material model by Chaboche under the uniaxial loading and stationary temperature conditions was first
considered. Then the parameter set of the model was identified by the proposed method from a set of
experimental data. In comparison to those by other methods, the resultant stress—strain curves by the
proposed method correlated well and reliably to the actual material behaviors.
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1. INTRODUCTION

Up to now, there has been an accelerating rate at which various structural materials have been
developed to assist the objective of industrial designers. In many industrial fields, materials are
often used under severe operating conditions such as cyclic loading, high temperature, high
pressure and high irradiation, for example, if they are used as pressure vessels and pipes of
a nuclear plant. For the reliable evaluation of deformation behaviours of these materials,
thermo-inelastic analysis is indispensable. A variety of theoretical models have been proposed
and discussed in the referenced literature to describe a wide range of viscoplastic behaviours of
metallic materials.1~7 Viscoplastic constitutive equations derived from these theories involve
many parameters, which significantly influence the behaviours of the constitutive equations.
Appropriate parameters must be determined accordingly such that the accurate behaviours of
materials can be expressed.

Every constitutive equation has its own method for the parameter identification. In conven-
tional approaches, the model of interest is first approximated and its parameters are identified
sequentially through the curve fitting approach.8 However, the determination of its process is
problem-dependent, and thus may not be easy if the model is highly non-linear. In addition, the
process may yield significant errors due to the model approximation, particularly when the
parameter space is high-dimensional.



On the other hand, the advance of computer hardware has increased the popularity of an
approach where all the parameters are identified simultaneously9 and, most commonly, optimiza-
tion methods are used to find the parameter set by adjusting them until they provide the best
agreement between the measured data and the computed model response. As a result, a number
of calculus-based techniques were proposed and incorporated to solve this optimization prob-
lem.10~12 These techniques, however, can fail in the actual situation, for example, when the
measured data are noisy or the model equations are inaccurate, since they can cause the objective
function to be complicated.

Two major strategies to deal with this straightforward problem may be to

(a) modify the objective function by a regularization or by choosing different weighting factors,
and

(b) use a different optimization method so that the optimization cannot fail.

Most researchers’ efforts were put on approach (a),13~17 but industrial engineers often come
across the difficulty that it is hard to determine parameters added in the objective function.

On the other hand, Evolutionary Algorithms (EAs), which have been named to represent
Genetic Algorithms (GAs),18 Evolutionary Programming (EP),19 Evolution Strategies (ESs)20,21
and their recombined algorithms,22 have appeared as robust optimization techniques in the last
few decades. EAs are based on the collective learning process within a population of individuals,
each of which represents a search point in the space of potential solutions to a given problem.
Each of these algorithms has clearly demonstrated its capability to yield good approximate
solutions even in the case of complicated multimodal, discontinuous, non-differentiable, and even
noisy or moving response surface optimization problems, and has been successfully implemented
in areas of structural design, control, etc.

In this paper, we therefore propose to use EAs for identifying the parameter set of inelastic
constitutive equations in accordance to approach (b). The advantage of the proposed method is
that parameters can be identified without any divergence in every case. Furthermore, an EA,
which can search for a potential solution efficiently, is proposed in this paper. The algorithm is
based on GAs, which have been most commonly used due to their promising performance for
a broad range of optimization problems, but its individual representation and reproductive
processes are formulated from a different viewpoint to achieve steady and fast convergence.

In the next section, the inelastic constitutive equation is described in a general form and
Chaboche’s model4 is introduced as an example for an inelastic material law. The third section
deals with the overview of the non-linear parameter identification and the fundamentals of
EAs, as well as the proposed formulation using EAs. The fourth section refers to the EA proposed
by the authors, and its comparison with GAs is further presented. In the fifth section, the
parameter identification of Chaboche’s model is formulated in accordance to EAs and the results
of numerical examples are described. Conclusions of the paper are summarized in the final
section.

2. INELASTIC CONSTITUTIVE EQUATIONS

In general, constitutive relations are given in state space form for the strain e and a set of 1 internal
variables m3Rf and, typically in the frame of the small strain approximation, have the following
form:

eR"eRK (e, m, h, p, i) (1a)

mQ "mQK (e, m, h, p, i) (1b)
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where h and p are the temperature and stress, respectively, and i3Rq represents a vector of
q material parameters. The following initial conditions are given for their direct analysis:

eD
t/0

"e
0

(1c)

mD
t/0

"m
0

(1d)

Chaboche’s viscoplastic model, for instance, is capable of describing cyclic hardening and
softening behaviours with the yielding surface and appears to model a wide range of inelastic
material behaviour characteristics. Its formation under the uniaxial loading and stationary
temperature conditions is given by

p"Ee% (2a)

eR"eR %#eR 1 (2b)

eR 1"T
Dp!½ D!R

K U
n
sgn(p!½ ) (2c)

½Q "HeR 1!D½ DeR 1 D (2d)

RQ "h D eR 1 D!dR DeR 1 D (2e)

where variables p, e%, e1, ½ and R are the uniaxial stress, the uniaxial elastic strain, the uniaxial
inelastic strain, the uniaxial back stress and the isotropic hardening variable, respectively, and the
vector j"[K, n, H, D, h, d, E] represents the material parameters. The notation S · T in equation
(2c) is zero if the value inside is negative. Initial conditions for the direct analysis of the model are
given by

eD
t/0

"e
0

(2f )

½ D
t/0

"½
0

(2g)

R D
t/0

"R
0

(2h)

In the cyclic loading test no external force is provided initially (e D
t/0

"0, ½ D
t/0

"0), and,
thus, considering the fact that Young’s modulus E can be easily found from experiments,
parameters K, n, H, D, h, d and R

0
must be determined to describe the performance of a specific

material.
For computer simulation, a time integration algorithm such as the mid-point rule is used to

discretize the equations.

3. NON-LINEAR PARAMETER IDENTIFICATION

3.1. Formulation

The parameter identification is generally defined as identifying the parameter set (vector)
x*3X when the measured data (vector) y*3W and direct mapping w :XPW are known. The
parameter space is given by

X"Mx3X
1
]· · ·]X

n
D g

j
(x)*0, ∀ j3M1, . . . , qNN (3)
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Figure 1. Problems of field quantities

where g
i
: X

1
]· · ·]X

n
PR represents inequality constraints. For the unconstrained problem,

X"X
1
]· · ·]X

n
. Problems with the non-linear direct mapping w are termed non-linear

parameter identification problems.
In practice, deterministic models describe reality only in an idealized sense, and thus we may

express the input—output relation as follows:

y"w(x)#e (4)

where the error term e3W is given by

e"e
1
#e

2
(5)

Here e
1

and e
2

are errors in the measurement of y and those in the model equations, respectively.
In the analysis of field quantities shown in Figure 1, the model equations in general take the form

¸ (i)/"q (6)

where ¸ ( · ), i, / and q are the differential operator, material property, field quantity and a force
or source term, respectively.

Parameter identification problems for equation (6) can be classified into the following types in
terms of the parameter set to be identified:24

(a) domain X, its unknown outer boundary or unknown inner boundary,
(b) governing equations,
(c) boundary conditions on the entire or partial boundary and/or the initial conditions,
(d) force or source q applying in X ,
(e) material properties i defined in X and involved in the governing equations.

It is also possible that the inverse problem consists of more than one classification. In these
problems, the input vector resides in the continuous space (X-Rn, n3N), and thus we confine
ourselves to continuous search space problems.

In reality, to be used as a method for an inverse problem whose solution is unique, the method
must at least possess the following features:24

(i) The method can find a parameter set almost identical to the exact solution when the
measured data and model equations are not subject to errors, i.e. when pseudo-experi-
mental data created from computer simulations are provided.

(ii) The method can still find a good approximate solution when the measured data and model
equations are subject to errors, i.e. when the actual experimental data were used.
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Out of a number of strategies25~31 that have been developed for solving inverse problems,
minimizing a least square criterion has been most widely used. In this approach, optimization
techniques are used to find x* by adjusting them until the measured data match the correspond-
ing data computed from the parameter set in the least square fashion, i.e.

min
x

f (x) (7a)

with the cost functional

f (x)"
m
+
i/1

k
i
DDy*

i
!t

i
(x) DD2 (7b)

where k
i
'0 is a weighting factor, without any prior knowledge, normally being all set to one. At

least some of its popularity is due to the fact that it can be applied in an ad hoc manner directly to
the deterministic model without any cognizance being taken of the probability distribution of the
observations.32 It is thus usually adequate for problems where the coefficients in the model
equations have no physical significance.

Although various calculus-based optimization techniques have been intensively used to solve
this optimization problem, these techniques may not be able to search properly if errors
contained in the model equations and in the measurement cause the objective function to be
severely non-linear such as non-convex or multimodal,33 in the case of non-linear t

i
(x). This

often occurs if the number of available measurement data is limited and, in such cases, the
solution may vibrate, diverge, or result in a local minimum.

Therefore in sanction with the objective of the paper described in Section 1, we hereby propose
to use EAs, which are significantly promising for complex optimization, and the next section
presents the fundamentals of EAs.

3.2. Evolutionary algorithms

EAs are probabilistic optimization algorithms based on the model of natural evolution, and the
algorithms have clearly demonstrated their capability to create good approximate solutions in
complex optimization problems. The popularity of the algorithms is due to the following
characteristics:

(i) less possibility to converge to a local minimum as the search starts from a number of points;
(ii) compatibility with the parallel computer;
(iii) robustness since only objective function information is required;
(iv) capability to find a solution in broad search space effectively through probabilistic opera-

tions.

Figure 2 shows the fundamental structure of EAs. First, a population of individuals, each
represented by a vector, is initially (generation t"0) generated at random, i.e.

P0"Mu0
1
, . . . , u0jN3Ij (8)

where j3N and I represent the population size of parental individuals and the space of
individual, respectively. The population then evolves towards better regions of the search space
by means of randomized processes of recombination, mutation and selection though either the
recombination or mutation operator is not implemented in some algorithms. In the recombina-
tion operator r : IjPIc, j parental individuals based c (3N) offspring individuals by combining
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Figure 2. Fundamental structure of evolutionary algorithms

part of the information from the parental individuals. The mutation m : IcPIc then forms new
individuals by making large alterations with small possibility to the offspring individuals
regardless of their inherent information. With the evaluation of fitness for all the individuals, the
selection operator s : IcXIc`jPIj favourably selects individuals of higher fitness to produce
more often than those of lower fitness. These reproductive operations form one generation of the
evolutionary process, which corresponds to one iteration in the algorithm, and the iteration is
repeated until a given terminal criterion is satisfied.

Out of the algorithms, GAs are most popular by the fact that their reproductive processes use
only a couple of deterministic rules (mostly randomized processes), causing them to be applicable
to a variety of complex optimization problems.

4. EVOLUTIONARY ALGORITHMS FOR REAL SEARCH SPACE

4.1. Formulation

EAs, in general, are rather formulated to comprise a broad range of optimization problems
although the problems of interest, as described in Section 2, are characterized only with
continuous search space. In this section we present the EA proposed by the authors, which was
specifically formulated for the optimization with continuous search space. The reproductive
operations of the proposed algorithm are intended to be similar to those of GAs such that it can
take the advantage of probabilistic features in GAs. The major difference of the proposed
algorithm from GAs is that the representation of the individual is given by a search point itself, i.e.
a real continuous vector. This formulation was made with an assumption that the direct use of the
search point may search more efficiently than the representation decoded into a binary string as
used in GAs. In this case, the population at generation t is given by

Pt"Mxt
1
, . . . , xtjN3Xj (9)

This representation makes up grasp the concept of the individual in a different manner. While the
binary string in GAs represents a DNA chromosome, a microscopic or genetic representation of
human being, the continuous vector representation corresponds to a set of macroscopic or
phenomenological information of the human being.

The definition of the recombination and mutation becomes the probabilistic distribution of the
phenomenological measures accordingly. If the two offspring individuals are formulated to be
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created from a pair of randomly selected parental individuals as in GAs, r@@ : I2PI, the recombi-
nation operation may be defined as

r@@ (xta , xtb)"(1!kta) · xta#ktb · xtb (10)
r@@(xtb , xta)"kta · xta#(1!ktb) · xtb

where xta and xtb are parental individuals at generation t and the coefficient kt
i
, ∀ i3Ma, bN, is

defined by the normal distribution with mean 0 and standard deviation gt
i
:

kt
i
"N(0, gtÈ

i
) (11)

The standard deviation can adopt a self-adaptive strategy (variable with respect to t)34 or be
simply constant. The self-adaptive strategy makes the convergence rate required for each
generation faster at the expense of the computation time and vice versa. Note that the mutation is
not embedded in this operator since it can allow individuals to alter largely with small possibility,
when the coefficient kt

i
is large.

The evaluation of the fitness can be conducted with a linear scaling, where the fitness of each
individual is calculated as the worst individual of the population subtracted from its objective
function value:

U(xt
i
)"maxM f (xt) Dxt3PtN!f (xt

i
), ∀ i3M1, . . . , jN (12)

as in GAs. U(xt
i
)*0 is thus satisfied by this equation. Proportional selection,35 which is the most

popular selection operation in GAs, can also be directly used in the proposed algorithm as it
requires U(xt

i
)*0. In this selection, the reproduction probabilities of individuals p

s
:XP[0, 1]

are given by their relative fitness,

p
s
(xt

i
)"

U(xt
i
)

+j
j/1

U (xt
j
)
*0 (13)

Optionally, ranking selection36 can be implemented in the algorithm.
The advantage of the proposed algorithm is its simple formulation as well as the compatibility

with GENESIS,37 which is one of the most popular GA software (only 200 lines out of 2400 lines
were modified). This enables us to use most of the options available for GENESIS. It is, therefore,
also possible to compare its performance with the GA directly, and the next section will discuss
the comparison from several performance tests.

4.2. Comparison

4.2.1. Test functions. As it is impossible to predict the behaviour of the algorithms by theoret-
ical considerations, a set of test functions having continuous search space were prepared to
demonstrate the capability of both the canonical GA, which is composed of the one-point
crossover38 and proportional selection, and the proposed algorithm. The mathematical charac-
teristics of the test functions are unimodal/multimodal, quadratic/non-quadratic, convex/non-
convex and continuous/discontinuous. The test functions are as follows:

Func. I: f
1
(x)"

n
+
i/1

x2
i
, x3Rn; n"30

!5·12)x
i
)5·12, x*"[0, . . . , 0]T (14)

f
1
(x*)"0
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Figure 3. 3-D representation of Func. I

Func. II: f
2
(x)"6n#

n
+
i/1

xx
i
y , x3Rn; n"5

!5·12)x
i
)5·12, x*"[!5·12, . . . , !5)T (15)

f
2
(x*)"0

Func. III: f
3
(x)"nA#

n
+
i/1

x2
i
!A cos (ux

i
), x3Rn; n"20, A"10, u"2n

!5·12)x
i
)5·12, x*"[0, . . . , 0]T (16)

f
3
(x*)"0

Func. IV: Func. III except that u"n/2.

Func. I is the simplest quadratic function, which is also characterized by unimodality,
continuity and convexity. It is often used as the first test case of non-linear functions since many
objective functions formulated in reality take this form. Func. II, introduced by De Jong,39 is
a simple linear but discontinuous function, which comprises a number of plateaus by the integer
operator xy. All gradient-based methods are not useful for this function due to its discontinu-
ity. The discontinuity gives difficulty even to other optimization methods since there is no
guidance towards the edge of each plateau. Funcs. III and IV are continuous, multimodal test
functions, which are generated by modifying the value of parameter u. The last term of the
function yields a number of local optima, which renders optimization methods difficult to search,
depending on the initial search point. Three-dimensional graphical representations of these
functions are shown in Figures 3—6.

4.2.2. Search performances. Internal parameters selected for both the algorithms are listed in
Table I. The crossover and mutation rates in the canonical GA, 0·6 and 0·0001, are typically used
in many publications. The standard deviation of the proposed algorithm was set to be constant
for simplicity. All the other internal parameters were set identical for both the algorithms. The
reader is referred to Reference 37 for the definition of the parameters which are not explained in
this paper. Note here that the elitist strategy35 was incorporated in the selection process of both
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Figure 4. 3-D representation of Func. II

Figure 5. 3-D representation of Func. III

Figure 6. 3-D representation of Func. IV

the algorithms. For generality, ten runs were performed for each test, and the average perfor-
mance of each algorithm was taken.

The results of the search performance of both the algorithms until 2500 generations are shown
in Figures 7—10. In the figures, real lines indicate the outcome from the proposed method whereas
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Table I. Internal parameters for both the algorithms

Canonical GA Proposed algorithm

Population size 50 50
Bit length per variable 30
Crossover rate 0·95
Mutation rate 0·001
Standard deviation 0·5 (constant)
Generation gap 5 5
Scaling window 1·0 1·0

Figure 7. Average of objective function values vs. generations for Func. I

Figure 8. Average of objective function values vs. generations for Func. II

the results by the canonical GA are indicated by the broken lines. The result of the first test clearly
reflects the superiority of the proposed algorithm on the unimodal function optimization. The
second result then indicates that the proposed algorithm still outperforms the canonical GA even
when the function is partially discontinuous. The canonical GA, in fact, could not find the global
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Figure 9. Average of objective function values vs. generations for Func. III

Figure 10. Average of objective function values vs. generations for Func. IV

optimum x*"0 in all the ten runs within the prescribed number of generations whereas the proposed
algorithm resulted in the global optimum in all the cases. The proposed algorithm also has a better
performance of Funcs. III and IV than GA. The GA was nearly in the state of ‘premature
convergence’, having a slow convergence rate before reaching the global optimum, for both the tests.

4.2.3. Computation time and memory usage. In this section, the computation time and memory
required for the optimization of Func. I up to 2000 generations with Sun SPARKStation II were
compared for both the algorithms. Parameters listed in Table I were used, except the bit length
per variable for GA, which was varied every five bits within a range of 10 and 30.

The results of the computation time and memory usage are shown in Figures 11 and 12. These
results indicate that, for the canonical GA, the more the computation time and memory usage, the
longer the bit length per variable. The fact that the computation time increases with the precision
of each variable increased is obviously caused by the additional computational effort for
decoding. On the other hand, the reason for the increase of the memory usage is that both the
binary and decoded representations must be saved in memory. Although the 30-bit representa-
tion was far beyond the real representation in precision, the GA required seven times of
computation time and eight times of memory usage of the proposed algorithm.

INELASTIC CONSTITUTIVE PARAMETER IDENTIFICATION 1081



Figure 11. Computation time vs. bit length

Figure 12. Memory usage vs. bit length

Conclusively, the proposed algorithm is superior to GAs in all the performance, computa-
tion time and memory usage for continuous search space problems. The next section will
deal with the parameter identification of inelastic constitutive equations using the proposed
algorithm.

5. PARAMETER IDENTIFICATION OF INELASTIC CONSTITUTIVE EQUATIONS

5.1. Formulation for parameter identification of Chaboche’s model

There were seven parameters to be determined for Chaboche’s model described in Section 2.
Let the parameter set xT"[K, n, H, D, h, d, R

0
], and represent the constitutive equations (2) with

strain e as the input variable with respect to time and stress p as the output variable in the
following form:

p"t (x, e) (17)
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Figure 14. Hysteresis loops by the cyclic loading test

Figure 13. Common cyclic loading test

where t :R7]RPR. If m pairs of stress—strain data M[p*
1
, e*

1
], . . . , [p*

m
, e*

m
]N are used to deter-

mine the parameter set, then the optimization problem to be formulated according to Section 3 is

min
x

m
+
i/1

k
i
DDp*

i
!t (x, e*

i
) DD2 (18)

where k
i
represents a weighting factor.

5.2. Identification with pseudo-experimental data

Before the actual parameter identification is conducted, we must confirm that nearly exact
parameters can be determined with pseudo-experimental data where the model responses and
equations are not subject to errors, to satisfy condition (i) described in Section 3.1. This section,
thus, first deals with the selection of appropriate experimental data sets and then the performance
of the proposed method.

The most common experimental test involves completely reversed cycling between constant
strain limits. Figures 13 and 14 illustrate the time history of the test and its hysteresis loops up to
five cycles. A strain amplitude is selected and an axial test specimen is loaded until the tensile
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Table II. Parameters of uniqueness tests

e
.!9

(%) DeR D (s~1) Material behaviour m m
T

m
C

Case I 0·36 8·0]10~3 Tensile 9 9 0
Case II 0·36 8·0]10~3 Tensile#cyclic loading 19 9 10

Case III
0·36 8·0]10~3 Tensile#cyclic loading 19 9 10
0·36 8·0]10~1 Tensile#cyclic loading 19 9 10

strain reaches a value of e
.!9

. Then the direction of loading is reversed until the strain reaches
e
.*/

.
The design of a suitable set of experiments and the performance of the proposed technique were

investigated stepwise through the following three test cases:

Case I: Tensile behaviour (m"m
T
).

Case II: I#cyclic hysteresis behaviour (m"m
T
#m

C
).

Case III: II with different strain rates (m"m
R
(m

T
#m

C
)).

m is the total number of measurement data and m
T
, m

C
and m

R
are the numbers of measurement

data of the tensile behaviour, cyclic hysteresis behaviour and the number of strain rates tested.
Table II lists the number of cycles, strain range, strain rate and the number of stress—strain data

used in the tests. The data of the tensile behaviour (m
T
"9) were obtained at every 0·004 per cent

strain increment, whilst the data of the cyclic hysteresis behaviour (m
C
"10) were obtained at

e"e
.!9

for all cycles. In Case III, cyclic hysteresis behaviours with two different strain rates were
used (m

R
"2). These stress—strain data to be used as measurement data were computed from the

parameter set xT"[50, 3, 5000, 100, 300, 0·6, 50]. This parameter set, therefore, must be identified
from the stress—strain data. Internal parameters of the proposed technique used for the parameter
identification were again those in Table I. All weighting factors k

i
in the objective function were

set to one. Note here that the initial parameter set for the proposed technique is not described as
the initial parameter set has little influence on the performance of the algorithm, by the fact that
the algorithm starts with many randomly selected parameter sets.

The objective function values of Cases I—III vs. generations are shown in Figure 15. It can be
first seen that the value of the objective function successfully converged close to zero for all the
cases. Material parameters in all the cases, after the objective function value became less than 0·1,
are listed in Table III in comparison to the exact solution.

Figure 16 shows the curves of the tensile behaviour and the tenth cyclic hysteresis behaviour
both created from the parameter set identified. The points of the tensile behaviour in the figure,
termed reference points, were used to find the parameter set and the points of the tenth cyclic
loading behaviour, all derived from the exact solution, are also shown as checking data. Clearly,
the checking data have some distance from the tenth cyclic curve although the first tensile curve
coincides with the reference data. Table III shows that only values of H and D are similar to the
exact solution. As we know that the parameter set used to create the pseudo-experimental data
makes the objective function value zero, the fact that the resultant objective function value with
a different parameter set is close to zero indicates that there is more than one solution. Figure 17
then shows the result of Case II. The curve created is well along the reference points of both the
tensile and cyclic loading behaviours. However, Table III indicates that parameters K and n are
not similar to the exact solution, again indicating that more data are necessary to find the
expected solution. Figure 18 shows the results of Case III. Providing different strain rates, the
parameter set identified finally almost coincides with the exact solution as shown in Table III.
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Figure 15. Objective function value vs. generations

Table III. Parameters identified in the uniqueness test

K n H D h R
0

d

Solution 50 3 5000 100 300 50 0·6
Case I 98·3 2·46 4729 89·8 229·9 38·11 1·54
Case II 98·8 1·83 5196 105·0 293·5 52·58 0·52
Case III 49·2 2·97 5002 101·8 311·2 50·7 0·69

Bold parameters are those close to the exact solution

With the assumption that such sets of data are sufficient to determine the appropriate
parameter set, the proposed technique was used to identify the parameters from ten different data
sets, which were created randomly along the same curves. Resultant parameters identified had
only an average of $0·73 per cent error at most from the exact solutions in all the cases.
Although more numerical studies may be necessary, the results obtained here at least indicate
that the proposed technique can find solutions almost identical to the exact solution, provided
there are appropriate pseudo-experimental data.

5.3. Identification with actual experimental data

In this section, the actual experimental data of 21
4
Cr—1Mo steel under a temperature of 673 K,

obtained from a benchmark project by the Society of Material Science, Japan,40 were used to
investigate the capability of the proposed method to satisfy the requirement of (ii) in Section 3.1.
In conformity with the selection of data discussed in the previous section, experimental
stress—strain data used for the parameter identification included information on material behav-
iours with different cycles and strain rates, and they are shown in Figure 19.

Parameters were identified with two other methods for comparison; one is a conventional
stepwise technique8 and the other is a technique where a gradient-based optimization method41
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Figure 16. Comparison between reference points and estimated curve for Case I

Figure 17. Comparison between reference points and estimated curve for Case II

was used to minimize the objective function (18). In Hishida’s technique, parameters K, n, H and
D are first determined by means of the least square method after the constitutive law is simplified
by letting the yield stress R be constant. Parameters h, d and R

0
are then determined in the second

step.
Table IV lists the resultant objective function value by each technique after the solution has

converged enough together with the values of their initial parameter set and the solution vectors.
The solution vector obtained by the proposed technique was xT"[214, 8·96, 31500, 1690, 157,
2·48, 37·5]. As shown in the table, the objective function value with the gradient-based technique
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Figure 18. Comparison between reference points and estimated curve for Case III

Figure 19. Experimental data of 21
4
Cr—1Mo steel
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Table IV. Parameters identified under measurement errors

Initial parameter set Objective
function

K n H D d h R
0

value

Proposed method 2·13]103
Gradient-based 200 5 20 000 300 100 5 0 2·13]103
technique 50 5 20 000 300 100 5 0 R

Stepwise method 50 5 20 000 300 100 5 0 3·22]103

Figure 20. Computed material curves vs. experimental data

from the initial parameter set xT"[200, 5, 20000, 300, 100, 5, 0] was almost identical to that with
the proposed method, finding the same solution vector. In addition, the computation time with
the gradient-based method was 1231 s, compared to 1847 s with the proposed technique when
SPARKStation 10 was used. However, the cost functional by the gradient-based technique
diverged when the initial parameter set was xT"[50, 5, 20000, 300, 100, 5, 0] though only the
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value of K differed. Clearly this indicates that the successful performance of the technique largely
depends on the initial parameter set chosen. The stepwise technique could successfully find
a stable parameter set even when a different initial parameter set was selected. However, the
technique created a larger cost functional value than did the proposed method.

Curves with different strain rates, created from the proposed method, are shown in Figure 20
together with the experimental data used for the parameter identification. Experimental data with
strain rate 0·001 per cent/s, which were not used for the identification, and their corresponding
curve created are also shown in the figure to show the appropriateness of the parameter set
identified. First, we can see that there exist model errors to some degree, which cannot be
removed unless we change the model used. However, the curves created are reasonably close to
the experimental data, indicating that the proposed technique is adequate for finding a parameter
set which describes good approximate material behaviours.

6. CONCLUSIONS

A method for identifying the parameter set of inelastic constitutive equations, which is based on
an EA, has been proposed. The algorithm, proposed by the authors, was formulated specifically
for optimization with continuous search space, and it was found that the algorithm could search
the optimal solution of test functions more efficiently in performance, computation time and
memory usage than the canonical GA.

The proposed technique was first used to identify the parameter set of Chaboche’s model under
the uniaxial loading and stationary temperature conditions from the pseudo-experimental data
created by the same Chaboche’s model. Numerical examples show that solutions close to the
exact solutions can be determined by the technique, provided there are appropriate data.

The proposed method was then tested for the parameter identification of Chaboche’s model
with the actual experimental data of 21

4
Cr—1Mo steel under a temperature of 673 K, and its

results were compared to those by two other methods. The results of the comparison show that
the technique is more accurate than methods determining parameters stepwise and is more
reliable in obtaining a convergent solution, indicating the appropriateness of the technique for the
parameter identification of inelastic constitutive equations.
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